بهبودی بر شبکه های عصبی چند لایه انتشار برگشتی با به کارگیری نرخ یادگیری متغیر و تئوری اتوماتان و تعیین نرخ یادگیری بهینه

نویسندگان

محمدرضا جعفریان

چکیده

شبکه های عصبی چند لایه پیش خور از دیرباز به طور وسیعی مورد توجه محققان بوده است. این شبکه ها علی رغم موفقیت چشم گیر در برقراری ارتباط بین ورودی و خروجی، دارای چندین نقطه ضعف بوده اند. به عنوان مثال زمان آموزش این شبکه ها نسبتاً طولانی است و گاهی ممکن است این شبکه ها آموزش نبینند. دلیل طولانی بودن زمان آموزش را می توان به انتخاب نامناسب پارامترهای شبکه نسبت داد. روش به دست آوردن پارامترهای وزن وبایاس شبکه، استفاده از گرادیان تابع انرژی شبکه می باشد. همان طور که می دانیم تابع خطای شبکه دارای سطح ناهمواری بوده لذا شبکه در نقاط بهینه محلی متوقف شده و آموزش نمی بیند. برای جبران اشکال های وارد به الگوریتم بازگشتی، جهت بالا بردن سرعت آموزش از نرخ یادگیری متغیر تطبیقی و برای جلوگیری از به دام افتادن شبکه در نقاط بهینه محلی از روش الگوریتم اتوماتان استفاده می نماییم. با استفاده از این روش ها می توان نرخ یادگیری بهینه برای شبکه های مختلف به دست آورد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبودی بر شبکه‌های عصبی چند لایه انتشار برگشتی با به کارگیری نرخ یادگیری متغیر و تئوری اتوماتان و تعیین نرخ یادگیری بهینه

شبکه‌های عصبی چند لایه پیش خور از دیرباز به طور وسیعی مورد توجه محققان بوده است. این شبکه‌ها علی‌رغم موفقیت چشم‌گیر در برقراری ارتباط بین ورودی و خروجی، دارای چندین نقطه ضعف بوده‌اند. به عنوان مثال زمان آموزش این شبکه‌ها نسبتاً طولانی است و گاهی ممکن است این شبکه‌ها آموزش نبینند. دلیل طولانی بودن زمان آموزش را می‌توان به انتخاب نامناسب پارامترهای شبکه نسبت داد. روش به دست آوردن پارامترهای وزن وب...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

ارزیابی عملکرد سمپاش زراعی نرخ متغیر با استفاده از شبکه های عصبی مصنوعی

جهت ارزیابی عملکرد پاشش یک سمپاش زراعی نرخ متغیر، از روش شبکه عصبی مصنوعی استفاده شد. داده های لازم برای مدل سازی، از آزمون های مزرعه ای به دست آمد. برای مدل سازی بده خروجی افشانک ها،727 شبکه با چهار نوع مدل عصبی مصنوعی خطی، پرسپترون چندلایه، تابع پایه شعاعی و رگرسیون تعمیم یافته آزمون شدند. برای هر افشانک 45، 22 و 23 داده به ترتیب برای آموزش، اعتبارسنجی و آزمایش استفاده شد. مدل تابع پایه شعاعی...

متن کامل

مهندسی شبکه های عصبی توسط اتوماتانهای یادگیر: تعیین اندازه مطلوب برای شبکه های عصبی سه لایه

هدف از مهندسی شبکه های عصبی بررسی معایب و مزایای شبکه های عصبی مصنوعی و ارایه روشهایی برای بهبود کارایی آنهاست. یکی از موضوعات مورد بحث در مهندسی شبکه های عصبی چند لایه، یافتن ساختار مناسب(نزدیک به بهینه) برای حل مسئله می باشد. معیار و نحوه انتخاب اندازه شبکه عصبی برای یک مسئله خاص هنوز شناخته شده نیست. در روشهای کلاسیک،طراح شبکه در ابتدای آموزش ساختاری را برای شبکه تعیین و سپس شبکه را آموزش می...

متن کامل

ارزیابی عملکرد سمپاش زراعی نرخ متغیر با استفاده از شبکه های عصبی مصنوعی

جهت ارزیابی عملکرد پاشش یک سمپاش زراعی نرخ متغیر، از روش شبکه عصبی مصنوعی استفاده شد. داده های لازم برای مدل سازی، از آزمون های مزرعه ای به دست آمد. برای مدل سازی بده خروجی افشانک ها،727 شبکه با چهار نوع مدل عصبی مصنوعی خطی، پرسپترون چندلایه، تابع پایه شعاعی و رگرسیون تعمیم یافته آزمون شدند. برای هر افشانک 45، 22 و 23 داده به ترتیب برای آموزش، اعتبارسنجی و آزمایش استفاده شد. مدل تابع پایه شعاعی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مهندسی سازه

ناشر: دانشگاه آزاد اسلامی واحد مراغه

ISSN 2345-6310

دوره 5

شماره 6 2009

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023